direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: D7×C25, C7⋊C26, C14⋊C25, (C2×C14)⋊4C24, (C24×C14)⋊5C2, (C23×C14)⋊20C22, (C22×C14)⋊10C23, SmallGroup(448,1395)
Series: Derived ►Chief ►Lower central ►Upper central
C7 — D7×C25 |
Generators and relations for D7×C25
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=e2=f7=g2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, bd=db, be=eb, bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, cg=gc, de=ed, df=fd, dg=gd, ef=fe, eg=ge, gfg=f-1 >
Subgroups: 20356 in 5650 conjugacy classes, 3199 normal (5 characteristic)
C1, C2, C2, C22, C22, C7, C23, C23, D7, C14, C24, C24, D14, C2×C14, C25, C25, C22×D7, C22×C14, C26, C23×D7, C23×C14, D7×C24, C24×C14, D7×C25
Quotients: C1, C2, C22, C23, D7, C24, D14, C25, C22×D7, C26, C23×D7, D7×C24, D7×C25
(1 223)(2 224)(3 218)(4 219)(5 220)(6 221)(7 222)(8 211)(9 212)(10 213)(11 214)(12 215)(13 216)(14 217)(15 204)(16 205)(17 206)(18 207)(19 208)(20 209)(21 210)(22 197)(23 198)(24 199)(25 200)(26 201)(27 202)(28 203)(29 190)(30 191)(31 192)(32 193)(33 194)(34 195)(35 196)(36 183)(37 184)(38 185)(39 186)(40 187)(41 188)(42 189)(43 176)(44 177)(45 178)(46 179)(47 180)(48 181)(49 182)(50 169)(51 170)(52 171)(53 172)(54 173)(55 174)(56 175)(57 162)(58 163)(59 164)(60 165)(61 166)(62 167)(63 168)(64 155)(65 156)(66 157)(67 158)(68 159)(69 160)(70 161)(71 148)(72 149)(73 150)(74 151)(75 152)(76 153)(77 154)(78 141)(79 142)(80 143)(81 144)(82 145)(83 146)(84 147)(85 134)(86 135)(87 136)(88 137)(89 138)(90 139)(91 140)(92 127)(93 128)(94 129)(95 130)(96 131)(97 132)(98 133)(99 120)(100 121)(101 122)(102 123)(103 124)(104 125)(105 126)(106 113)(107 114)(108 115)(109 116)(110 117)(111 118)(112 119)
(1 83)(2 84)(3 78)(4 79)(5 80)(6 81)(7 82)(8 71)(9 72)(10 73)(11 74)(12 75)(13 76)(14 77)(15 64)(16 65)(17 66)(18 67)(19 68)(20 69)(21 70)(22 57)(23 58)(24 59)(25 60)(26 61)(27 62)(28 63)(29 106)(30 107)(31 108)(32 109)(33 110)(34 111)(35 112)(36 99)(37 100)(38 101)(39 102)(40 103)(41 104)(42 105)(43 92)(44 93)(45 94)(46 95)(47 96)(48 97)(49 98)(50 85)(51 86)(52 87)(53 88)(54 89)(55 90)(56 91)(113 190)(114 191)(115 192)(116 193)(117 194)(118 195)(119 196)(120 183)(121 184)(122 185)(123 186)(124 187)(125 188)(126 189)(127 176)(128 177)(129 178)(130 179)(131 180)(132 181)(133 182)(134 169)(135 170)(136 171)(137 172)(138 173)(139 174)(140 175)(141 218)(142 219)(143 220)(144 221)(145 222)(146 223)(147 224)(148 211)(149 212)(150 213)(151 214)(152 215)(153 216)(154 217)(155 204)(156 205)(157 206)(158 207)(159 208)(160 209)(161 210)(162 197)(163 198)(164 199)(165 200)(166 201)(167 202)(168 203)
(1 41)(2 42)(3 36)(4 37)(5 38)(6 39)(7 40)(8 29)(9 30)(10 31)(11 32)(12 33)(13 34)(14 35)(15 50)(16 51)(17 52)(18 53)(19 54)(20 55)(21 56)(22 43)(23 44)(24 45)(25 46)(26 47)(27 48)(28 49)(57 92)(58 93)(59 94)(60 95)(61 96)(62 97)(63 98)(64 85)(65 86)(66 87)(67 88)(68 89)(69 90)(70 91)(71 106)(72 107)(73 108)(74 109)(75 110)(76 111)(77 112)(78 99)(79 100)(80 101)(81 102)(82 103)(83 104)(84 105)(113 148)(114 149)(115 150)(116 151)(117 152)(118 153)(119 154)(120 141)(121 142)(122 143)(123 144)(124 145)(125 146)(126 147)(127 162)(128 163)(129 164)(130 165)(131 166)(132 167)(133 168)(134 155)(135 156)(136 157)(137 158)(138 159)(139 160)(140 161)(169 204)(170 205)(171 206)(172 207)(173 208)(174 209)(175 210)(176 197)(177 198)(178 199)(179 200)(180 201)(181 202)(182 203)(183 218)(184 219)(185 220)(186 221)(187 222)(188 223)(189 224)(190 211)(191 212)(192 213)(193 214)(194 215)(195 216)(196 217)
(1 20)(2 21)(3 15)(4 16)(5 17)(6 18)(7 19)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)(57 71)(58 72)(59 73)(60 74)(61 75)(62 76)(63 77)(64 78)(65 79)(66 80)(67 81)(68 82)(69 83)(70 84)(85 99)(86 100)(87 101)(88 102)(89 103)(90 104)(91 105)(92 106)(93 107)(94 108)(95 109)(96 110)(97 111)(98 112)(113 127)(114 128)(115 129)(116 130)(117 131)(118 132)(119 133)(120 134)(121 135)(122 136)(123 137)(124 138)(125 139)(126 140)(141 155)(142 156)(143 157)(144 158)(145 159)(146 160)(147 161)(148 162)(149 163)(150 164)(151 165)(152 166)(153 167)(154 168)(169 183)(170 184)(171 185)(172 186)(173 187)(174 188)(175 189)(176 190)(177 191)(178 192)(179 193)(180 194)(181 195)(182 196)(197 211)(198 212)(199 213)(200 214)(201 215)(202 216)(203 217)(204 218)(205 219)(206 220)(207 221)(208 222)(209 223)(210 224)
(1 13)(2 14)(3 8)(4 9)(5 10)(6 11)(7 12)(15 22)(16 23)(17 24)(18 25)(19 26)(20 27)(21 28)(29 36)(30 37)(31 38)(32 39)(33 40)(34 41)(35 42)(43 50)(44 51)(45 52)(46 53)(47 54)(48 55)(49 56)(57 64)(58 65)(59 66)(60 67)(61 68)(62 69)(63 70)(71 78)(72 79)(73 80)(74 81)(75 82)(76 83)(77 84)(85 92)(86 93)(87 94)(88 95)(89 96)(90 97)(91 98)(99 106)(100 107)(101 108)(102 109)(103 110)(104 111)(105 112)(113 120)(114 121)(115 122)(116 123)(117 124)(118 125)(119 126)(127 134)(128 135)(129 136)(130 137)(131 138)(132 139)(133 140)(141 148)(142 149)(143 150)(144 151)(145 152)(146 153)(147 154)(155 162)(156 163)(157 164)(158 165)(159 166)(160 167)(161 168)(169 176)(170 177)(171 178)(172 179)(173 180)(174 181)(175 182)(183 190)(184 191)(185 192)(186 193)(187 194)(188 195)(189 196)(197 204)(198 205)(199 206)(200 207)(201 208)(202 209)(203 210)(211 218)(212 219)(213 220)(214 221)(215 222)(216 223)(217 224)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)(113 114 115 116 117 118 119)(120 121 122 123 124 125 126)(127 128 129 130 131 132 133)(134 135 136 137 138 139 140)(141 142 143 144 145 146 147)(148 149 150 151 152 153 154)(155 156 157 158 159 160 161)(162 163 164 165 166 167 168)(169 170 171 172 173 174 175)(176 177 178 179 180 181 182)(183 184 185 186 187 188 189)(190 191 192 193 194 195 196)(197 198 199 200 201 202 203)(204 205 206 207 208 209 210)(211 212 213 214 215 216 217)(218 219 220 221 222 223 224)
(1 166)(2 165)(3 164)(4 163)(5 162)(6 168)(7 167)(8 157)(9 156)(10 155)(11 161)(12 160)(13 159)(14 158)(15 150)(16 149)(17 148)(18 154)(19 153)(20 152)(21 151)(22 143)(23 142)(24 141)(25 147)(26 146)(27 145)(28 144)(29 136)(30 135)(31 134)(32 140)(33 139)(34 138)(35 137)(36 129)(37 128)(38 127)(39 133)(40 132)(41 131)(42 130)(43 122)(44 121)(45 120)(46 126)(47 125)(48 124)(49 123)(50 115)(51 114)(52 113)(53 119)(54 118)(55 117)(56 116)(57 220)(58 219)(59 218)(60 224)(61 223)(62 222)(63 221)(64 213)(65 212)(66 211)(67 217)(68 216)(69 215)(70 214)(71 206)(72 205)(73 204)(74 210)(75 209)(76 208)(77 207)(78 199)(79 198)(80 197)(81 203)(82 202)(83 201)(84 200)(85 192)(86 191)(87 190)(88 196)(89 195)(90 194)(91 193)(92 185)(93 184)(94 183)(95 189)(96 188)(97 187)(98 186)(99 178)(100 177)(101 176)(102 182)(103 181)(104 180)(105 179)(106 171)(107 170)(108 169)(109 175)(110 174)(111 173)(112 172)
G:=sub<Sym(224)| (1,223)(2,224)(3,218)(4,219)(5,220)(6,221)(7,222)(8,211)(9,212)(10,213)(11,214)(12,215)(13,216)(14,217)(15,204)(16,205)(17,206)(18,207)(19,208)(20,209)(21,210)(22,197)(23,198)(24,199)(25,200)(26,201)(27,202)(28,203)(29,190)(30,191)(31,192)(32,193)(33,194)(34,195)(35,196)(36,183)(37,184)(38,185)(39,186)(40,187)(41,188)(42,189)(43,176)(44,177)(45,178)(46,179)(47,180)(48,181)(49,182)(50,169)(51,170)(52,171)(53,172)(54,173)(55,174)(56,175)(57,162)(58,163)(59,164)(60,165)(61,166)(62,167)(63,168)(64,155)(65,156)(66,157)(67,158)(68,159)(69,160)(70,161)(71,148)(72,149)(73,150)(74,151)(75,152)(76,153)(77,154)(78,141)(79,142)(80,143)(81,144)(82,145)(83,146)(84,147)(85,134)(86,135)(87,136)(88,137)(89,138)(90,139)(91,140)(92,127)(93,128)(94,129)(95,130)(96,131)(97,132)(98,133)(99,120)(100,121)(101,122)(102,123)(103,124)(104,125)(105,126)(106,113)(107,114)(108,115)(109,116)(110,117)(111,118)(112,119), (1,83)(2,84)(3,78)(4,79)(5,80)(6,81)(7,82)(8,71)(9,72)(10,73)(11,74)(12,75)(13,76)(14,77)(15,64)(16,65)(17,66)(18,67)(19,68)(20,69)(21,70)(22,57)(23,58)(24,59)(25,60)(26,61)(27,62)(28,63)(29,106)(30,107)(31,108)(32,109)(33,110)(34,111)(35,112)(36,99)(37,100)(38,101)(39,102)(40,103)(41,104)(42,105)(43,92)(44,93)(45,94)(46,95)(47,96)(48,97)(49,98)(50,85)(51,86)(52,87)(53,88)(54,89)(55,90)(56,91)(113,190)(114,191)(115,192)(116,193)(117,194)(118,195)(119,196)(120,183)(121,184)(122,185)(123,186)(124,187)(125,188)(126,189)(127,176)(128,177)(129,178)(130,179)(131,180)(132,181)(133,182)(134,169)(135,170)(136,171)(137,172)(138,173)(139,174)(140,175)(141,218)(142,219)(143,220)(144,221)(145,222)(146,223)(147,224)(148,211)(149,212)(150,213)(151,214)(152,215)(153,216)(154,217)(155,204)(156,205)(157,206)(158,207)(159,208)(160,209)(161,210)(162,197)(163,198)(164,199)(165,200)(166,201)(167,202)(168,203), (1,41)(2,42)(3,36)(4,37)(5,38)(6,39)(7,40)(8,29)(9,30)(10,31)(11,32)(12,33)(13,34)(14,35)(15,50)(16,51)(17,52)(18,53)(19,54)(20,55)(21,56)(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49)(57,92)(58,93)(59,94)(60,95)(61,96)(62,97)(63,98)(64,85)(65,86)(66,87)(67,88)(68,89)(69,90)(70,91)(71,106)(72,107)(73,108)(74,109)(75,110)(76,111)(77,112)(78,99)(79,100)(80,101)(81,102)(82,103)(83,104)(84,105)(113,148)(114,149)(115,150)(116,151)(117,152)(118,153)(119,154)(120,141)(121,142)(122,143)(123,144)(124,145)(125,146)(126,147)(127,162)(128,163)(129,164)(130,165)(131,166)(132,167)(133,168)(134,155)(135,156)(136,157)(137,158)(138,159)(139,160)(140,161)(169,204)(170,205)(171,206)(172,207)(173,208)(174,209)(175,210)(176,197)(177,198)(178,199)(179,200)(180,201)(181,202)(182,203)(183,218)(184,219)(185,220)(186,221)(187,222)(188,223)(189,224)(190,211)(191,212)(192,213)(193,214)(194,215)(195,216)(196,217), (1,20)(2,21)(3,15)(4,16)(5,17)(6,18)(7,19)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112)(113,127)(114,128)(115,129)(116,130)(117,131)(118,132)(119,133)(120,134)(121,135)(122,136)(123,137)(124,138)(125,139)(126,140)(141,155)(142,156)(143,157)(144,158)(145,159)(146,160)(147,161)(148,162)(149,163)(150,164)(151,165)(152,166)(153,167)(154,168)(169,183)(170,184)(171,185)(172,186)(173,187)(174,188)(175,189)(176,190)(177,191)(178,192)(179,193)(180,194)(181,195)(182,196)(197,211)(198,212)(199,213)(200,214)(201,215)(202,216)(203,217)(204,218)(205,219)(206,220)(207,221)(208,222)(209,223)(210,224), (1,13)(2,14)(3,8)(4,9)(5,10)(6,11)(7,12)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56)(57,64)(58,65)(59,66)(60,67)(61,68)(62,69)(63,70)(71,78)(72,79)(73,80)(74,81)(75,82)(76,83)(77,84)(85,92)(86,93)(87,94)(88,95)(89,96)(90,97)(91,98)(99,106)(100,107)(101,108)(102,109)(103,110)(104,111)(105,112)(113,120)(114,121)(115,122)(116,123)(117,124)(118,125)(119,126)(127,134)(128,135)(129,136)(130,137)(131,138)(132,139)(133,140)(141,148)(142,149)(143,150)(144,151)(145,152)(146,153)(147,154)(155,162)(156,163)(157,164)(158,165)(159,166)(160,167)(161,168)(169,176)(170,177)(171,178)(172,179)(173,180)(174,181)(175,182)(183,190)(184,191)(185,192)(186,193)(187,194)(188,195)(189,196)(197,204)(198,205)(199,206)(200,207)(201,208)(202,209)(203,210)(211,218)(212,219)(213,220)(214,221)(215,222)(216,223)(217,224), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112)(113,114,115,116,117,118,119)(120,121,122,123,124,125,126)(127,128,129,130,131,132,133)(134,135,136,137,138,139,140)(141,142,143,144,145,146,147)(148,149,150,151,152,153,154)(155,156,157,158,159,160,161)(162,163,164,165,166,167,168)(169,170,171,172,173,174,175)(176,177,178,179,180,181,182)(183,184,185,186,187,188,189)(190,191,192,193,194,195,196)(197,198,199,200,201,202,203)(204,205,206,207,208,209,210)(211,212,213,214,215,216,217)(218,219,220,221,222,223,224), (1,166)(2,165)(3,164)(4,163)(5,162)(6,168)(7,167)(8,157)(9,156)(10,155)(11,161)(12,160)(13,159)(14,158)(15,150)(16,149)(17,148)(18,154)(19,153)(20,152)(21,151)(22,143)(23,142)(24,141)(25,147)(26,146)(27,145)(28,144)(29,136)(30,135)(31,134)(32,140)(33,139)(34,138)(35,137)(36,129)(37,128)(38,127)(39,133)(40,132)(41,131)(42,130)(43,122)(44,121)(45,120)(46,126)(47,125)(48,124)(49,123)(50,115)(51,114)(52,113)(53,119)(54,118)(55,117)(56,116)(57,220)(58,219)(59,218)(60,224)(61,223)(62,222)(63,221)(64,213)(65,212)(66,211)(67,217)(68,216)(69,215)(70,214)(71,206)(72,205)(73,204)(74,210)(75,209)(76,208)(77,207)(78,199)(79,198)(80,197)(81,203)(82,202)(83,201)(84,200)(85,192)(86,191)(87,190)(88,196)(89,195)(90,194)(91,193)(92,185)(93,184)(94,183)(95,189)(96,188)(97,187)(98,186)(99,178)(100,177)(101,176)(102,182)(103,181)(104,180)(105,179)(106,171)(107,170)(108,169)(109,175)(110,174)(111,173)(112,172)>;
G:=Group( (1,223)(2,224)(3,218)(4,219)(5,220)(6,221)(7,222)(8,211)(9,212)(10,213)(11,214)(12,215)(13,216)(14,217)(15,204)(16,205)(17,206)(18,207)(19,208)(20,209)(21,210)(22,197)(23,198)(24,199)(25,200)(26,201)(27,202)(28,203)(29,190)(30,191)(31,192)(32,193)(33,194)(34,195)(35,196)(36,183)(37,184)(38,185)(39,186)(40,187)(41,188)(42,189)(43,176)(44,177)(45,178)(46,179)(47,180)(48,181)(49,182)(50,169)(51,170)(52,171)(53,172)(54,173)(55,174)(56,175)(57,162)(58,163)(59,164)(60,165)(61,166)(62,167)(63,168)(64,155)(65,156)(66,157)(67,158)(68,159)(69,160)(70,161)(71,148)(72,149)(73,150)(74,151)(75,152)(76,153)(77,154)(78,141)(79,142)(80,143)(81,144)(82,145)(83,146)(84,147)(85,134)(86,135)(87,136)(88,137)(89,138)(90,139)(91,140)(92,127)(93,128)(94,129)(95,130)(96,131)(97,132)(98,133)(99,120)(100,121)(101,122)(102,123)(103,124)(104,125)(105,126)(106,113)(107,114)(108,115)(109,116)(110,117)(111,118)(112,119), (1,83)(2,84)(3,78)(4,79)(5,80)(6,81)(7,82)(8,71)(9,72)(10,73)(11,74)(12,75)(13,76)(14,77)(15,64)(16,65)(17,66)(18,67)(19,68)(20,69)(21,70)(22,57)(23,58)(24,59)(25,60)(26,61)(27,62)(28,63)(29,106)(30,107)(31,108)(32,109)(33,110)(34,111)(35,112)(36,99)(37,100)(38,101)(39,102)(40,103)(41,104)(42,105)(43,92)(44,93)(45,94)(46,95)(47,96)(48,97)(49,98)(50,85)(51,86)(52,87)(53,88)(54,89)(55,90)(56,91)(113,190)(114,191)(115,192)(116,193)(117,194)(118,195)(119,196)(120,183)(121,184)(122,185)(123,186)(124,187)(125,188)(126,189)(127,176)(128,177)(129,178)(130,179)(131,180)(132,181)(133,182)(134,169)(135,170)(136,171)(137,172)(138,173)(139,174)(140,175)(141,218)(142,219)(143,220)(144,221)(145,222)(146,223)(147,224)(148,211)(149,212)(150,213)(151,214)(152,215)(153,216)(154,217)(155,204)(156,205)(157,206)(158,207)(159,208)(160,209)(161,210)(162,197)(163,198)(164,199)(165,200)(166,201)(167,202)(168,203), (1,41)(2,42)(3,36)(4,37)(5,38)(6,39)(7,40)(8,29)(9,30)(10,31)(11,32)(12,33)(13,34)(14,35)(15,50)(16,51)(17,52)(18,53)(19,54)(20,55)(21,56)(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49)(57,92)(58,93)(59,94)(60,95)(61,96)(62,97)(63,98)(64,85)(65,86)(66,87)(67,88)(68,89)(69,90)(70,91)(71,106)(72,107)(73,108)(74,109)(75,110)(76,111)(77,112)(78,99)(79,100)(80,101)(81,102)(82,103)(83,104)(84,105)(113,148)(114,149)(115,150)(116,151)(117,152)(118,153)(119,154)(120,141)(121,142)(122,143)(123,144)(124,145)(125,146)(126,147)(127,162)(128,163)(129,164)(130,165)(131,166)(132,167)(133,168)(134,155)(135,156)(136,157)(137,158)(138,159)(139,160)(140,161)(169,204)(170,205)(171,206)(172,207)(173,208)(174,209)(175,210)(176,197)(177,198)(178,199)(179,200)(180,201)(181,202)(182,203)(183,218)(184,219)(185,220)(186,221)(187,222)(188,223)(189,224)(190,211)(191,212)(192,213)(193,214)(194,215)(195,216)(196,217), (1,20)(2,21)(3,15)(4,16)(5,17)(6,18)(7,19)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112)(113,127)(114,128)(115,129)(116,130)(117,131)(118,132)(119,133)(120,134)(121,135)(122,136)(123,137)(124,138)(125,139)(126,140)(141,155)(142,156)(143,157)(144,158)(145,159)(146,160)(147,161)(148,162)(149,163)(150,164)(151,165)(152,166)(153,167)(154,168)(169,183)(170,184)(171,185)(172,186)(173,187)(174,188)(175,189)(176,190)(177,191)(178,192)(179,193)(180,194)(181,195)(182,196)(197,211)(198,212)(199,213)(200,214)(201,215)(202,216)(203,217)(204,218)(205,219)(206,220)(207,221)(208,222)(209,223)(210,224), (1,13)(2,14)(3,8)(4,9)(5,10)(6,11)(7,12)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56)(57,64)(58,65)(59,66)(60,67)(61,68)(62,69)(63,70)(71,78)(72,79)(73,80)(74,81)(75,82)(76,83)(77,84)(85,92)(86,93)(87,94)(88,95)(89,96)(90,97)(91,98)(99,106)(100,107)(101,108)(102,109)(103,110)(104,111)(105,112)(113,120)(114,121)(115,122)(116,123)(117,124)(118,125)(119,126)(127,134)(128,135)(129,136)(130,137)(131,138)(132,139)(133,140)(141,148)(142,149)(143,150)(144,151)(145,152)(146,153)(147,154)(155,162)(156,163)(157,164)(158,165)(159,166)(160,167)(161,168)(169,176)(170,177)(171,178)(172,179)(173,180)(174,181)(175,182)(183,190)(184,191)(185,192)(186,193)(187,194)(188,195)(189,196)(197,204)(198,205)(199,206)(200,207)(201,208)(202,209)(203,210)(211,218)(212,219)(213,220)(214,221)(215,222)(216,223)(217,224), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112)(113,114,115,116,117,118,119)(120,121,122,123,124,125,126)(127,128,129,130,131,132,133)(134,135,136,137,138,139,140)(141,142,143,144,145,146,147)(148,149,150,151,152,153,154)(155,156,157,158,159,160,161)(162,163,164,165,166,167,168)(169,170,171,172,173,174,175)(176,177,178,179,180,181,182)(183,184,185,186,187,188,189)(190,191,192,193,194,195,196)(197,198,199,200,201,202,203)(204,205,206,207,208,209,210)(211,212,213,214,215,216,217)(218,219,220,221,222,223,224), (1,166)(2,165)(3,164)(4,163)(5,162)(6,168)(7,167)(8,157)(9,156)(10,155)(11,161)(12,160)(13,159)(14,158)(15,150)(16,149)(17,148)(18,154)(19,153)(20,152)(21,151)(22,143)(23,142)(24,141)(25,147)(26,146)(27,145)(28,144)(29,136)(30,135)(31,134)(32,140)(33,139)(34,138)(35,137)(36,129)(37,128)(38,127)(39,133)(40,132)(41,131)(42,130)(43,122)(44,121)(45,120)(46,126)(47,125)(48,124)(49,123)(50,115)(51,114)(52,113)(53,119)(54,118)(55,117)(56,116)(57,220)(58,219)(59,218)(60,224)(61,223)(62,222)(63,221)(64,213)(65,212)(66,211)(67,217)(68,216)(69,215)(70,214)(71,206)(72,205)(73,204)(74,210)(75,209)(76,208)(77,207)(78,199)(79,198)(80,197)(81,203)(82,202)(83,201)(84,200)(85,192)(86,191)(87,190)(88,196)(89,195)(90,194)(91,193)(92,185)(93,184)(94,183)(95,189)(96,188)(97,187)(98,186)(99,178)(100,177)(101,176)(102,182)(103,181)(104,180)(105,179)(106,171)(107,170)(108,169)(109,175)(110,174)(111,173)(112,172) );
G=PermutationGroup([[(1,223),(2,224),(3,218),(4,219),(5,220),(6,221),(7,222),(8,211),(9,212),(10,213),(11,214),(12,215),(13,216),(14,217),(15,204),(16,205),(17,206),(18,207),(19,208),(20,209),(21,210),(22,197),(23,198),(24,199),(25,200),(26,201),(27,202),(28,203),(29,190),(30,191),(31,192),(32,193),(33,194),(34,195),(35,196),(36,183),(37,184),(38,185),(39,186),(40,187),(41,188),(42,189),(43,176),(44,177),(45,178),(46,179),(47,180),(48,181),(49,182),(50,169),(51,170),(52,171),(53,172),(54,173),(55,174),(56,175),(57,162),(58,163),(59,164),(60,165),(61,166),(62,167),(63,168),(64,155),(65,156),(66,157),(67,158),(68,159),(69,160),(70,161),(71,148),(72,149),(73,150),(74,151),(75,152),(76,153),(77,154),(78,141),(79,142),(80,143),(81,144),(82,145),(83,146),(84,147),(85,134),(86,135),(87,136),(88,137),(89,138),(90,139),(91,140),(92,127),(93,128),(94,129),(95,130),(96,131),(97,132),(98,133),(99,120),(100,121),(101,122),(102,123),(103,124),(104,125),(105,126),(106,113),(107,114),(108,115),(109,116),(110,117),(111,118),(112,119)], [(1,83),(2,84),(3,78),(4,79),(5,80),(6,81),(7,82),(8,71),(9,72),(10,73),(11,74),(12,75),(13,76),(14,77),(15,64),(16,65),(17,66),(18,67),(19,68),(20,69),(21,70),(22,57),(23,58),(24,59),(25,60),(26,61),(27,62),(28,63),(29,106),(30,107),(31,108),(32,109),(33,110),(34,111),(35,112),(36,99),(37,100),(38,101),(39,102),(40,103),(41,104),(42,105),(43,92),(44,93),(45,94),(46,95),(47,96),(48,97),(49,98),(50,85),(51,86),(52,87),(53,88),(54,89),(55,90),(56,91),(113,190),(114,191),(115,192),(116,193),(117,194),(118,195),(119,196),(120,183),(121,184),(122,185),(123,186),(124,187),(125,188),(126,189),(127,176),(128,177),(129,178),(130,179),(131,180),(132,181),(133,182),(134,169),(135,170),(136,171),(137,172),(138,173),(139,174),(140,175),(141,218),(142,219),(143,220),(144,221),(145,222),(146,223),(147,224),(148,211),(149,212),(150,213),(151,214),(152,215),(153,216),(154,217),(155,204),(156,205),(157,206),(158,207),(159,208),(160,209),(161,210),(162,197),(163,198),(164,199),(165,200),(166,201),(167,202),(168,203)], [(1,41),(2,42),(3,36),(4,37),(5,38),(6,39),(7,40),(8,29),(9,30),(10,31),(11,32),(12,33),(13,34),(14,35),(15,50),(16,51),(17,52),(18,53),(19,54),(20,55),(21,56),(22,43),(23,44),(24,45),(25,46),(26,47),(27,48),(28,49),(57,92),(58,93),(59,94),(60,95),(61,96),(62,97),(63,98),(64,85),(65,86),(66,87),(67,88),(68,89),(69,90),(70,91),(71,106),(72,107),(73,108),(74,109),(75,110),(76,111),(77,112),(78,99),(79,100),(80,101),(81,102),(82,103),(83,104),(84,105),(113,148),(114,149),(115,150),(116,151),(117,152),(118,153),(119,154),(120,141),(121,142),(122,143),(123,144),(124,145),(125,146),(126,147),(127,162),(128,163),(129,164),(130,165),(131,166),(132,167),(133,168),(134,155),(135,156),(136,157),(137,158),(138,159),(139,160),(140,161),(169,204),(170,205),(171,206),(172,207),(173,208),(174,209),(175,210),(176,197),(177,198),(178,199),(179,200),(180,201),(181,202),(182,203),(183,218),(184,219),(185,220),(186,221),(187,222),(188,223),(189,224),(190,211),(191,212),(192,213),(193,214),(194,215),(195,216),(196,217)], [(1,20),(2,21),(3,15),(4,16),(5,17),(6,18),(7,19),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28),(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56),(57,71),(58,72),(59,73),(60,74),(61,75),(62,76),(63,77),(64,78),(65,79),(66,80),(67,81),(68,82),(69,83),(70,84),(85,99),(86,100),(87,101),(88,102),(89,103),(90,104),(91,105),(92,106),(93,107),(94,108),(95,109),(96,110),(97,111),(98,112),(113,127),(114,128),(115,129),(116,130),(117,131),(118,132),(119,133),(120,134),(121,135),(122,136),(123,137),(124,138),(125,139),(126,140),(141,155),(142,156),(143,157),(144,158),(145,159),(146,160),(147,161),(148,162),(149,163),(150,164),(151,165),(152,166),(153,167),(154,168),(169,183),(170,184),(171,185),(172,186),(173,187),(174,188),(175,189),(176,190),(177,191),(178,192),(179,193),(180,194),(181,195),(182,196),(197,211),(198,212),(199,213),(200,214),(201,215),(202,216),(203,217),(204,218),(205,219),(206,220),(207,221),(208,222),(209,223),(210,224)], [(1,13),(2,14),(3,8),(4,9),(5,10),(6,11),(7,12),(15,22),(16,23),(17,24),(18,25),(19,26),(20,27),(21,28),(29,36),(30,37),(31,38),(32,39),(33,40),(34,41),(35,42),(43,50),(44,51),(45,52),(46,53),(47,54),(48,55),(49,56),(57,64),(58,65),(59,66),(60,67),(61,68),(62,69),(63,70),(71,78),(72,79),(73,80),(74,81),(75,82),(76,83),(77,84),(85,92),(86,93),(87,94),(88,95),(89,96),(90,97),(91,98),(99,106),(100,107),(101,108),(102,109),(103,110),(104,111),(105,112),(113,120),(114,121),(115,122),(116,123),(117,124),(118,125),(119,126),(127,134),(128,135),(129,136),(130,137),(131,138),(132,139),(133,140),(141,148),(142,149),(143,150),(144,151),(145,152),(146,153),(147,154),(155,162),(156,163),(157,164),(158,165),(159,166),(160,167),(161,168),(169,176),(170,177),(171,178),(172,179),(173,180),(174,181),(175,182),(183,190),(184,191),(185,192),(186,193),(187,194),(188,195),(189,196),(197,204),(198,205),(199,206),(200,207),(201,208),(202,209),(203,210),(211,218),(212,219),(213,220),(214,221),(215,222),(216,223),(217,224)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112),(113,114,115,116,117,118,119),(120,121,122,123,124,125,126),(127,128,129,130,131,132,133),(134,135,136,137,138,139,140),(141,142,143,144,145,146,147),(148,149,150,151,152,153,154),(155,156,157,158,159,160,161),(162,163,164,165,166,167,168),(169,170,171,172,173,174,175),(176,177,178,179,180,181,182),(183,184,185,186,187,188,189),(190,191,192,193,194,195,196),(197,198,199,200,201,202,203),(204,205,206,207,208,209,210),(211,212,213,214,215,216,217),(218,219,220,221,222,223,224)], [(1,166),(2,165),(3,164),(4,163),(5,162),(6,168),(7,167),(8,157),(9,156),(10,155),(11,161),(12,160),(13,159),(14,158),(15,150),(16,149),(17,148),(18,154),(19,153),(20,152),(21,151),(22,143),(23,142),(24,141),(25,147),(26,146),(27,145),(28,144),(29,136),(30,135),(31,134),(32,140),(33,139),(34,138),(35,137),(36,129),(37,128),(38,127),(39,133),(40,132),(41,131),(42,130),(43,122),(44,121),(45,120),(46,126),(47,125),(48,124),(49,123),(50,115),(51,114),(52,113),(53,119),(54,118),(55,117),(56,116),(57,220),(58,219),(59,218),(60,224),(61,223),(62,222),(63,221),(64,213),(65,212),(66,211),(67,217),(68,216),(69,215),(70,214),(71,206),(72,205),(73,204),(74,210),(75,209),(76,208),(77,207),(78,199),(79,198),(80,197),(81,203),(82,202),(83,201),(84,200),(85,192),(86,191),(87,190),(88,196),(89,195),(90,194),(91,193),(92,185),(93,184),(94,183),(95,189),(96,188),(97,187),(98,186),(99,178),(100,177),(101,176),(102,182),(103,181),(104,180),(105,179),(106,171),(107,170),(108,169),(109,175),(110,174),(111,173),(112,172)]])
160 conjugacy classes
class | 1 | 2A | ··· | 2AE | 2AF | ··· | 2BK | 7A | 7B | 7C | 14A | ··· | 14CO |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 7 | 7 | 7 | 14 | ··· | 14 |
size | 1 | 1 | ··· | 1 | 7 | ··· | 7 | 2 | 2 | 2 | 2 | ··· | 2 |
160 irreducible representations
dim | 1 | 1 | 1 | 2 | 2 |
type | + | + | + | + | + |
image | C1 | C2 | C2 | D7 | D14 |
kernel | D7×C25 | D7×C24 | C24×C14 | C25 | C24 |
# reps | 1 | 62 | 1 | 3 | 93 |
Matrix representation of D7×C25 ►in GL6(𝔽29)
28 | 0 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 0 | 28 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 0 | 28 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 | 0 |
0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 0 | 28 |
28 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 0 | 28 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 18 | 1 |
0 | 0 | 0 | 0 | 28 | 0 |
28 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 25 | 4 |
0 | 0 | 0 | 0 | 18 | 4 |
G:=sub<GL(6,GF(29))| [28,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[1,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[1,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[28,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,18,28,0,0,0,0,1,0],[28,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,25,18,0,0,0,0,4,4] >;
D7×C25 in GAP, Magma, Sage, TeX
D_7\times C_2^5
% in TeX
G:=Group("D7xC2^5");
// GroupNames label
G:=SmallGroup(448,1395);
// by ID
G=gap.SmallGroup(448,1395);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,18822]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=e^2=f^7=g^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,d*f=f*d,d*g=g*d,e*f=f*e,e*g=g*e,g*f*g=f^-1>;
// generators/relations